选择合适的技术进行大数据分析

日期: 2014-06-22 作者:张培颖 来源:TechTarget中国

大数据的能量和其为企业带来的竞争力优势已经逐渐显现,现在大数据已经成为商业智能、分析和数据管理市场领域中讨论度最高的话题之一,当然也是最热门的流行语之一。此外,企业已经看到了将大数据与云计算绑定所带来的好处。云计算提供可扩展性,使得其成为大数据分析的实践之车。

对于企业而言,大数据不仅是个热门话题,更是真切的需求所在。许多企业开始着手于大数据分析项目,但是现在,越来越多的企业存储的信息量就算不是PB级,起码也有TB量级。这些企业可能希望每天能分析几次关键数据,甚至是实现实时分析;而传统BI流程对历史数据进行分析的频率是以周或月为单位的。

此外,越来越多复杂查询的处理带来了各种不同的数据集,其中有可能包含来自企业资源计划(ERP)系统和客户关系管理(CRM)系统交易数据、社交媒介和地理空间数据,还有内部文档和其它格式信息等等。

要进行大数据分析,选择合适的技术是规划的第一部分,企业选择了数据库软件、分析工具以及相关的技术架构后,才可以进行下一步并开发一个真正成功的大数据平台。技术供应商处理这些需求的方式是多种多样的。许多数据库和数据仓库供应商都在关注及时处理大量复杂数据的能力。有的用列式数据存储来实现更快速的查询,有的提供内建的查询优化器,有的增加对Hadoop和MapReduce这类开源技术的支持功能。

内存分析工具可能对分析处理速度的提升有所帮助,因为它能减少磁盘数据转换的需求;而数据虚拟化软件和其它实时数据集成技术可对运行中不同数据源的信息进行收集。对于垂直市场而言,现成的分析应用程序都是专门为其定制的,因为诸如电信、金融服务和网络游戏这些行业都必须处理大数据。当公司管理人员和业务经理需要查看大数据分析查询结果时,数据可视化工具可以简化其流程。

企业在在制定实施方案、对大数据基础设施进行选型之前,还需要考虑一些问题,比如数据及时性,因为并不是所有数据库都支持实时数据可用性。各种数据源需要与数据关联性和业务规则复杂度进行链接,以获得一个包含企业绩效、销售机会、客户行为、风险因素和其它业务指标的全面视图。由于分析的需要,历史数据的数量也需考虑在内。如果我们需要五年的数据,而一个数据源只包含两年的信息,那么该怎么办呢?然,这些因素并不能从根本上影响需求的规划,但是它们可以帮助企业部署大数据分析系统、选择最为合适的技术。

大数据正在以稳定的步伐渗透到各行各业,未来我们的生活中大数据的应用会越来越多,而对于企业而言,其整个企业的信息质量会变得更好,而且信息能够更高效的得到利用。

我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。

我原创,你原创,我们的内容世界才会更加精彩!

【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】

微信公众号

TechTarget微信公众号二维码

TechTarget

官方微博

TechTarget中国官方微博二维码

TechTarget中国

作者

张培颖
张培颖

云计算网站编辑

相关推荐

  • 评估公共IaaS方案的关键特性

    为了评估有前景的IaaS提供商,需要研究他们的实例类型范围,以及他们对新兴技术,数据库选项等等的支持。

  • 移动互联网:企业如何在大数据的野蛮生长中掘金?

    随着全球移动设备、可穿戴设备等智能设备的不断增多,我们看到大数据的数量也不断增长,而且是爆发式的增长。IDC的一份报告预测,到2020年,大数据和业务分析市场将增长至203亿美元,是2015年1120亿美元的两倍。

  • 2017年数字经济新时代:除去云计算,还需要什么

    据LinkedIn最近的调查结果显示,最受欢迎的职业技能都与数字技术有关,可见日益普及的数字技术将引领未来。目前,用户界面设计已成为最受欢迎的移动应用技能之一。

  • 大数据新使命:如何创造未来

    现在我们探讨大数据,人们更关心数据如何创造一个未来。对于大数据的分析,企业已经不仅再关注过去,还关注于对未来的价值创造,这是大数据的一个新的使命。