大数据的出现使业务智能真正地走入了21世纪。但事实上“大数据”词代表的并不是解决方案,而是一类问题。在这些PB数量级的数据中,隐藏着怎样的价值?我们从中能得什么,并且使之指导业务部署的方方面面。但这一巨大量数据实际上有用的没有多少。所以为了利用其隐藏的价值,企业需要收集、过滤,并通过情感分析应用、定位工具以及其它的技术来分析它,从中产生有用的信息,从而为今后的业务发展服务。
云可作为大数据分析的使能器
Forrester定义大数据为“在大规模的经济性下,获取数据的技术和技能。”这里最关键的一个词是经济。如果提取、处理和利用数据的成本超过了数据价值本身,那么这项工作就是没意义的。幸运的是随着数据量的不断增长,技术也在不断地进化,可帮助大部分企业利用这些数据。云技术,无论是公有云、私有云还是混合云,在让企业从大数据分析中提取潜在的ROI方面,都是不可或缺的一部分。
收集并过虑
前面已经提到巨大量的数据中可用的部分很少,但还是有大量的数据需要过虑,以后关联并存储其有用性。对大量存储着临时信息的基础设施投资的利益几乎没有,因为这一临时数据大部分都会被丢弃。另外从公司防火墙外部移到内部的网络的数据也不会获得什么有价值的信息,而且处理它也是使用IT经理头疼的一件事。
这一阶段的大数据过滤是一个完美的公有云平台应用,它可以提供按需扩展的计算和存储资源。
分析
一旦数据转化为可用的形式,那么就进入到分析产生信息的阶段。从长远来看,提供给分析应用的原始数据没有必要一下保留,需要有效存储是分析处理的结果。公有云和混合云技术可用在分析阶段,在数据集处理阶段可引入Hadoop或类似替代方案。在公有云用户的情况下,原始分析阶段可以在公有云基础设施上执行,然后使用私有云组件把处理过的、可用的信息拿到公司内部。
虚拟化、集成和协作
在这一阶段,我们实际上已经拥有了可用的信息,可以用来指导决策。这还没有结束,还要使这些信息可为用户使用,转化并住处到现有的系统中,如企业资源规划和客户资源管理应用。软件即服务应用运行在云中,利用稍早阶段开发的数据,来强化集成,让用户相互协作。
有了云计算技术,大数据的价值才能得到更好的转化。不得不说,对于在使数据转化为商用方面,云是一个相当完美的平台。
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号
TechTarget
官方微博
TechTarget中国
相关推荐
-
评估公共IaaS方案的关键特性
为了评估有前景的IaaS提供商,需要研究他们的实例类型范围,以及他们对新兴技术,数据库选项等等的支持。
-
有意义的步骤让私有云实现更容易
整个私有云基础架构包含很多方面,这些会影响到组织的云存储计划,了解这些很关键。
-
移动互联网:企业如何在大数据的野蛮生长中掘金?
随着全球移动设备、可穿戴设备等智能设备的不断增多,我们看到大数据的数量也不断增长,而且是爆发式的增长。IDC的一份报告预测,到2020年,大数据和业务分析市场将增长至203亿美元,是2015年1120亿美元的两倍。
-
2017年数字经济新时代:除去云计算,还需要什么
据LinkedIn最近的调查结果显示,最受欢迎的职业技能都与数字技术有关,可见日益普及的数字技术将引领未来。目前,用户界面设计已成为最受欢迎的移动应用技能之一。