Dataguise最近发布了Hadoop十大数据安全措施,内容涵盖隐私风险、数据管理和信息安全等,可以帮助专业人士降低大数据应用的潜在数据泄漏和政策违规等风险,对于那些考虑部署Hadoop的企业来说非常值得参考。
Dataguise为多家财富200强企业提供Hadoop安全服务,总结出了一套适合大规模多样化环境的大数据安全实践和流程。
大数据分析向来伴随着隐私话题和争议,在大数据分析中的海量数据里,难免会出现姓名、地址和身份号码等个人隐私信息PII(Personally Identifiable Information)。
而大量金融数据中类似信用卡和银行账户号码中难免也会携带上述个人信息,对这些数据的访问将引起极大的争议。但是通过缜密的计划、测试、生产预备工作,以及对大数据技术的合理应用,大多数隐私问题都可以得到缓解。
以下是Dataguise给出的Hadoop项目实施的最佳安全实践,尤其对项目初期的规划阶段有重要参考价值:
1.数据隐私措施越早越好。在规划阶段就明确数据隐私保护策略,最好在将数据导入Hadoop之前完成,这可以防患未然。
2.明确你所在企业中哪些数据元素属于敏感数据。充分考虑企业的隐私政策,相关行业规定和政府法规。
3.审视分析环境和装配Hadoop系统的过程中是否藏有/夹带敏感数据。
4.收集足够信息来明确合规风险。
5.明确业务分析是否需要访问真实数据,或“脱敏”数据能否使用。然后选择合适的敏感信息遮挡和加密等矫正技术(masking or encryption)。遮挡(masking)技术提供最好的安全性能,而加密则更具灵活性,视将来的需要而定。
6.确保数据保护方案能够同时支持遮挡和加密两种数据矫正技术,尤其是当需要将经过遮挡处理和未经遮挡的两个版本的数据分别存放于不同的Hadoop目录下的时候。
7.确保数据保护技术对所有数据文件提供一致的masking方式,这样可以保证在各个数据汇聚维度上的分析的准确性。
8.确定特定数据集是否需要定制的保护方案,出于数据单元安全管理的需要,可以考虑将Hadoop目录划分成更小的群组。
9.确保你选择的加密方案与企业的访问控制技术能够互操作,这样特定级别和身份的用户只能访问Hadoop集群中特定的数据范围。
10.当需要使用加密技术的时候,确保部署合适的技术(Java、Pig等)实现无缝加密,同时确保对数据的无障碍访问。
通过及早启动并建立敏感数据预案,企业能尽早发现Hadoop环境中的敏感数据,分析合规风险并合理采用数据保护技术,这不但能大大降低数据泄漏和合规风险,还能提高大数据项目的投资回报。
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号
TechTarget
官方微博
TechTarget中国
相关推荐
-
打造衢州城市大脑:人工智能和大数据如何发挥作用
2017年12月18-19日,2018年“雪亮工程”重点支持城市(区)项目建设现场培训班和浙江省“雪亮工程”建设现场会在衢州召开。衢州“雪亮工程”领导小组向来自数十个地市的专家、领导介绍了工程建设阶段性成果。
-
联想云与启明星辰深度融合:盖起云端业务与数据安全的新堡垒
2017年9月12日,启明星辰与联想云在北京宣布达成战略合作伙伴关系。双方将发挥各自的优势,在云计算领域开展深度合作,共同探索了云时代下,企业级云服务和安全方案深度融合的新生态模式。
-
Office 365安全功能:与其描述的一样好吗?
在线和应用安全永远不会做到完美,但是Office 365安全功能却近乎完美。本文概述了微软如何在其流行套件加入安全功能。
-
UCloud安全屋:流动数据更有价值 更能重复创造价值
UCloud安全屋基于UCloud云计算平台,通过安全手段确保了用户数据可以上传,但却不能下载;另外,基于区块链技术,确保每个用户对数据操作都进行了全方面的记录。